The anterior versus posterior hippocampal oscillations debate in human spatial navigation: evidence from an electrocorticographic case study
نویسندگان
چکیده
INTRODUCTION Hippocampal oscillations have been regularly described as playing a dominant role in spatial memory and navigation in rodents. In humans, the relative role of anterior versus posterior rhythms during navigational memory is not established. METHODS Here, we tested this hypothesis using direct brain ECoG recordings in the anterior and posterior hippocampus of a patient, in a navigational task requiring spatial memory. We assessed multiple oscillatory bands during encoding and retrieval phases. RESULTS We found navigation related 1-3.5 Hz activity during retrieval, both in the anterior and posterior hippocampus. Activity between 4 and 8 Hz was identified during both encoding and retrieval, only in the anterior hippocampus. CONCLUSIONS Our findings are consistent with the view that an anterior/posterior functional gradient is present in the hippocampus, and involves two distinct neuronal networks, supporting either encoding or retrieval processes. Although this is a single case scenario, these findings suggest that neural oscillations during spatial navigation do vary across hippocampal subregions, as a function of encoding versus retrieval processes during the mnemonic process. In this single case study, the results point to the presence of a dual involvement of multiple frequency bands across hippocampal subregions during encoding and retrieval. Although these results need generalization, they provide a new perspective on distinct physiological properties of the anterior and posterior hippocampus in human spatial navigation during encoding and retrieval.
منابع مشابه
Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze.
The hippocampus and parahippocampal cortices exhibit theta oscillations during spatial navigation in animals and humans, and in the former are thought to mediate spatial memory formation. Functional specificity of human hippocampal theta, however, is unclear. Neuromagnetic activity was recorded with a whole-head 275-channel magnetoencephalographic (MEG) system as healthy participants navigated ...
متن کاملTraveling Theta Waves in the Human Hippocampus.
The hippocampal theta oscillation is strongly correlated with behaviors such as memory and spatial navigation, but we do not understand its specific functional role. One hint of theta's function came from the discovery in rodents that theta oscillations are traveling waves that allow parts of the hippocampus to simultaneously exhibit separate oscillatory phases. Because hippocampal theta oscill...
متن کاملAnatomical Variations of Circle of Willis in 57 Human Brains
Purpose: The circle of willis is responsible for blood supply of brain, which may suffer from anatomical variations. These disturbances can lead to aneurysm or even arterial rupture. The purpose of this study was to evaluate the anatomical structure of the cerebral arteries forming the circle of willis in adult cadavers. Also, cerebral versus non- cerebral versus non-cerebral arterial walls wer...
متن کاملHippocampal theta oscillations are slower in humans than in rodents: implications for models of spatial navigation and memory.
The theta oscillation is a neuroscience enigma. When a rat runs through an environment, large-amplitude theta oscillations (4-10 Hz) reliably appear in the hippocampus's electrical activity. The consistency of this pattern led to theta playing a central role in theories on the neural basis of mammalian spatial navigation and memory. However, in fact, hippocampal oscillations at 4-10 Hz are rare...
متن کاملBehavioral correlates of human hippocampal delta and theta oscillations during navigation.
Previous rodent studies demonstrate movement-related increases in theta oscillations, and recent evidence suggests that multiple navigationally relevant variables are reflected in this activity. Human invasive recordings have revealed movement-related modulations in delta and theta activity, although it is unclear whether additional behavioral variables are responsible for modulating this neura...
متن کامل